
Demo: High Resolution Point Clouds
from mmWave Radar

Akarsh Prabhakara★, Tao Jin★, Arnav Das†, Gantavya Bhatt†, Lilly Kumari†,
Elahe Soltanaghai#, Jeff Bilmes†, Swarun Kumar★ and Anthony Rowe★$

★Carnegie Mellon University †University of Washington
#University of Illinois, Urbana-Champaign $Bosch Research

ABSTRACT
Millimeter wave radars can perceive through occlusions like
dust, fog, smoke and clothes. But compared to cameras and
lidars, their perception quality is orders of magnitude poorer.
RadarHD [3] tackles this problem of poor quality by creating
a machine learning super resolution pipeline trained against
high quality lidar scans to mimic lidar. RadarHD ingests low
resolution radar and generates high quality lidar-like point
clouds even in occluded settings. RadarHD can also make
use of the high quality output for typical robotics tasks like
odometry, mapping and classification using conventional
lidar workflows. Here, we demonstrate the effectiveness of
RadarHD’s point clouds against lidar in occluded settings.

1 INTRODUCTION
Cameras and lidars, which are the standard sensors for most
robotic tasks suffer in the presence of occlusions from par-
ticulate matter like dust, smoke and fog. Millimeter wave
(mmWave) sensing systems have shown great potential for
perceiving through these occlusions [1]. Compact mmWave
radars are becoming more ubiquitous for portable, robotic
use cases where sensing through occlusions is essential [2].
While mmWave radars can see through occlusions, com-

pact radars yield only poor quality perception. This is due to
the compact form factor, which results in poor angular reso-
lution – that is, the ability to tell apart two nearby objects.
Poorer the resolution, coarser the perception and perfor-
mance of all downstream application tasks like odometry,
mapping and classification degrades. For comparison, while
cameras and lidars have an angular resolution of 0.01° and
0.1°, mmWave radars are at 15°. This results in coarse grained,
blobby perception. We tackled this problem in RadarHD [3].
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Figure 1: Overview: RadarHD obtains high resolution
point clouds from low resolution, compact, mmWave
radars to enable high quality perception in occlusions.
RadarHD upsamples the low resolution, compact mmWave
radar to obtain lidar-like point clouds even in occluded en-
vironments. In an effort to bring our robotics work to the
wireless audience, we are presenting RadarHD as a demo.

As a motivating scenario, we show in [3] that we can en-
able a futuristic fire fighting robot to perceive and navigate
through thick smoke using compact, mmWave radars. Unlike
past work which uses accurate trajectory for synthetic aper-
ture super resolution [4, 5] we make no assumptions on the
motion, so the radar can remain static/move unconstrained.
This allows RadarHD to be broadly applicable to any freely
moving robotic system that needs to see past occlusions.

Demo: https://youtu.be/me8ozpgyy0M
GitHub: https://github.com/akarsh-prabhakara/RadarHD

2 RADARHD OVERVIEW
Before we describe our demo setup, we will briefly describe
how RadarHD tackles the resolution challenge.

RadarHD performs machine learning driven super resolu-
tion to obtain a general purpose, high resolution point cloud.
We achieve this by training low resolution radar I/Q with
high resolution ground truth lidar (Fig. 1) using a custom
designed super resolution model. Learning to obtain a gen-
eral purpose representation strives to replace lidar in lidar
denied scenes but still obtain lidar-like point clouds that can
go through any lidar processing workflows. This makes it
easy for robotic system integration.
The key challenges encountered in designing the super-

vised learning framework are all to do with the nature of
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radar data being different from vision data where super res-
olution has been extensively studied. First, we have a pre-
processing step that decides how to input the raw I/Q data
into the network as "images". Our solution is to perform
a low level thresholding on range-azimuth radar heatmap
that filters out noise but allows most of the information rich,
radar artifacts arising due to poor resolution to be captured
in the radar input image.

Second, we enable the model to understand these sinc-like
artifacts and remove them. We achieve this by choosing a
polar representation of range-azimuth for the input image, as
opposed to Cartesian. This makes the artifacts occur along
a row (along azimuth) instead of spreading angularly (in
Cartesian). This helps learning blocks like convolutional
layers to capture these artifact patterns more effectively.
Lastly, in contrast to camera images where neighboring

pixels are similar, visualizing a time series of low resolution
radar images reveals that they are sparse and suffer from
specular noise from frame to frame. RadarHD tackles this
by choosing an encoder-decoder U-net based architecture.
The encoder learns the radar artifacts and removes them to
create a semantic understanding of the scene. The decoder
upsamples the artifact-free semantic understanding to yield
lidar-like images. We account for specular noise by making
U-net input a history of frames to look for persistent reflec-
tions and ignore fluttering reflections. To get lidar-like im-
ages with sharp edges and boundaries, in addition to Binary
Cross Entropy, we also make use of Dice loss that promotes
sharpness. [3] describes our methodology in detail.

3 DEMO SETUP
Sensor Hardware: We use TI AWR1843BOOST as the low
resolution radar. We deploy it along with DCA1000EVM to
get raw radar I/Q data. We use Ouster OS-0 64 beam lidar for
ground truth. The lidar and radar assembly will be mounted
on a rigid body that is portable.
Software: We obtain raw I/Q radar and lidar data over
ethernet. We then process the packets as radar and lidar
frames and take it through RadarHD pipeline. For demo
purposes, lidar frames are visualized as is. Radar frames
go through the inference pipeline on a pre-trained model
to obtain lidar-like images which are then thresholded to
convert to lidar-like point clouds for visualization. The raw
radar, lidar and RadarHD point clouds will be visualized
similar to this.
Scenes: We will show the effectiveness of RadarHD infer-
ences on the following different types of scenes (Fig. 2).
• Static radar-lidar assembly overlooking a corner of a room
as a baseline.

• Static radar-lidar assembly covered with a cloth curtain to
show a proof of concept occluded setting.
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Figure 2: We demo RadarHD against lidar in (a) static
(b) static but occluded by cloth curtain (c) static but
occluded by fog (d) allow people to move and the radar-
lidar assembly to move around in the region.

• Static radar-lidar assembly covered with a self contained
chamber with dense fog.Wewill generate the fog using fog
machines. We will fully comply with venue policies on the
use of fog machines by coordinating with the organizers.

• Radar-lidar assembly with curtain/fog overlooking a cor-
ner where people can walk by and test the system.

• Moving the radar-lidar assembly over a region to show
that the point clouds from walls and anything else in the
region moves accordingly.

Requirements: We would like to get a portion of room (5m
x 5m, maybe even a corner of a room) where we could setup
our radar-lidar assembly and add objects like chairs and
tripods to create an interesting scene. Besides this, generic
requirements include power, WiFi (that allows NTP), and
tables (to setup display monitors for visualization).

4 CONCLUSION
Wepresent a demonstration of RadarHD - a solution to obtain
high quality point clouds from a cheap, compact, mmWave
radar. RadarHD achieves this by designing a machine learn-
ing super resolution model trained against high quality lidar.
We show the effectiveness of RadarHD against lidar in oc-
cluded settings such as with a cloth curtain and fog. RadarHD
paves the way to engineer sensing applications that require
high quality perception even in occluded environments.
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